11 research outputs found

    Robust artifactual independent component classification for BCI practitioners

    Get PDF
    Objective. EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain–computer interfaces (BCIs). Approach. Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.EC/FP7/224631/EU/Tools for Brain-Computer Interaction/TOBIBMBF, 01GQ0850, Verbundprojekt: Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktion - Teilprojekte A1, A3, A4, B4, W3, ZentrumDFG, 194657344, EXC 1086: BrainLinks-BrainTool

    An Approach to Investigating Socio-economic Tussles Arising from Building the Future Internet

    Get PDF
    With the evolution of the Internet from a controlled research network to a worldwide social and economic platform, the initial assumptions regarding stakeholder cooperative behavior are no longer valid. Conflicts have emerged in situations where there are opposing interests. Previous work in the literature has termed these conflicts tussles. This article presents the research of the SESERV project, which develops a methodology to investigate such tussles and is carrying out a survey of tussles identified within the research projects funded under the Future Networks topic of the FP7. Selected tussles covering both social and economic aspects are analyzed also in this articl

    Intra-articular bioactivity of a p38 MAPK inhibitor and development of an extended-release system

    No full text
    In the treatment of arthritic diseases, oral or systemic administration of anti-inflammatory substances, such as p38 MAPK inhibitors, is hampered by numerous side effects. To overcome them, formulations of rapid and extended drug delivery systems were studied in intra-articular administration. For the first time, VX-745, a highly selective p38 MAPK inhibitor, demonstrated in vivo bioactivity, similar to dexamethasone activity, following intra-articular administration in an antigen-induced arthritic (AIA) mouse model. The in vitro bioactivity of VX-745 was also shown on synoviocytes, reducing the IL-6 concentration. Process and formulation parameters (i.e., polymer concentration, aqueous/organic phase ratio, emulsification speed and process, and evaporation pressure) and particle characterisation (i.e., drug loading, size of particle, and surface aspect) were extensively examined to produce optimised formulations. Indeed, a burst release provides a rapid saturation of intracellular p38 MAPK to relieve patients from pain and inflammation. Then, drug diffusion would be sufficient to maintain an effective dose over 2-3 months. This study confirms the effectiveness of encapsulated p38 MAPK inhibitors in extended drug delivery systems and seems to be a promising strategy for intra-articular treatment

    Long-term amelioration of established collagen-induced arthritis achieved with short-term therapy combining anti-CD3 and anti-tumor necrosis factor treatments

    No full text
    The goal of rheumatoid arthritis (RA) treatment is to achieve clinical remission in order to limit structural damage and physical disability. To this end, recent emphasis has been placed on aggressive treatment early in the course of disease with drugs such as anti-tumor necrosis factor (anti-TNF) agents. As T cells are also thought to play an important role in the initiation of RA, we hypothesized that targeting both TNF and T cells would result in better outcomes. The aim of this study was to examine the efficacy of combined therapy with anti-CD3 and anti-TNF in experimental RA

    Present Yourself! By MHC Class I and MHC Class II Molecules

    No full text
    Since the discovery of MHC molecules, it has taken 40 years to arrive at a coherent picture of how MHC class I and MHC class II molecules really work. This is a story of the proteases and MHC-like chaperones that support the MHC class I and II molecules in presenting peptides to the immune system. We now understand that the MHC system shapes both the repertoire of presented peptides and the subsequent T cell response, with important implications ranging from transplant rejection to tumor immunotherapies. Here we present an illustrated review of the ins and outs of MHC class I and MHC class II antigen presentatio

    Single-cell transcriptomics of 20 mouse organs creates a "Tabula Muris"

    No full text

    Ageing hallmarks exhibit organ-specific temporal signatures

    No full text

    A single-cell transcriptomic atlas characterizes ageing tissues in the mouse

    No full text
    corecore